Orthogonal Polynomials and Fourier Orthogonal Series on a Cone

نویسندگان

چکیده

برای دانلود باید عضویت طلایی داشته باشید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Fourier Series of Orthogonal Polynomials

It follows from Bateman [4] page 213 after setting = 1 2 . It can also be found with slight modi cation in Bateman [5] page122. However we are not aware of any reference where explicit formulas for the Fourier coef cients for Gegenbauer, Jacobi, Laguerre and Hermite polynomials can be found. In this article we use known formulas for the connection coef cients relating an arbitrary orthogonal po...

متن کامل

A discretized Fourier orthogonal expansion in orthogonal polynomials on a cylinder

We study the convergence of a discretized Fourier orthogonal expansion in orthogonal polynomials on B× [−1, 1], where B is the closed unit disk in R. The discretized expansion uses a finite set of Radon projections and provides an algorithm for reconstructing three dimensional images in computed tomography. The Lebesgue constant is shown to be m (log(m + 1)), and convergence is established for ...

متن کامل

On a Series Representation for Carleman Orthogonal Polynomials

Let {pn(z)}n=0 be a sequence of complex polynomials (pn of degree n) that are orthonormal with respect to the area measure over the interior domain of an analytic Jordan curve. We prove that each pn of sufficiently large degree has a primitive that can be expanded in a series of functions recursively generated by a couple of integral transforms whose kernels are defined in terms of the degree n...

متن کامل

Relative asymptotics and Fourier series of orthogonal polynomials with a discrete Sobolev inner product

Let m be a finite positive Borel measure supported in 1⁄2 1; 1 and introduce the discrete Sobolev type inner product

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

ژورنال

عنوان ژورنال: Journal of Fourier Analysis and Applications

سال: 2020

ISSN: 1069-5869,1531-5851

DOI: 10.1007/s00041-020-09741-x